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Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or 
policies of the U.S. EPA
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Risk is Multifaceted

• EPA is charged with evaluating risks associated with 
1000s of chemicals in commerce

• For example, as of June 2017 there were 67,709
chemicals on the TSCA Inventory

• Evaluating chemicals for risk to humans or the 
environment requires information on hazard and 
exposure potential

• Exposure potential quantifies the degree of contact 
between a chemical and a receptor

• Toxicokinetic information is required to bridge hazard 
and exposure (what real-world exposure is required to 
produce an internal concentration consistent with a 
potential hazard?)
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Risk is Multifaceted

EPA’s ExpoCast Project
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Forecasting Exposure is a Systems Problem
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Forecasting Exposure is a Systems Problem
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Forecasting Exposure is a Systems Problem
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Forecasting Exposure is a Systems Problem
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Traditional Exposure Data Are Limited

Use category information for 
chemicals being tested via high 

throughput screening at EPA

ToxCast Tox21

# Chemicals

Egeghy et al. (2012)

The ExpoCast project and its collaborators are working to fill gaps in exposure data for 1000s of 
chemicals using high-throughput new approach methodologies (NAMs) for exposure
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New Approach Methodologies and Exposure

“NAMs were taken in a broad context to include in silico 
approaches, in chemico and in vitro assays, as well as the 
inclusion of information from the exposure of chemicals in the 
context of hazard assessment”

“…the committee sees the potential for the application of 
computational exposure science to be highly valuable and 
credible for comparison and priority-setting among chemicals in 
a risk-based context.”
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Eight Classes of NAMs for Exposure

• Chemical descriptors that provide information on chemicals in 
an exposure context (e.g., how chemicals are used)

• Machine-learning approaches that use these descriptors to fill 
gaps in existing data

• High-throughput exposure models for various pathways

• High-throughput measurements to fill gaps in monitoring data

• High-throughput approaches for measuring and predicting 
chemical toxicokinetics

• New evaluation frameworks for integrating models and 
monitoring to provide consensus exposure predictions

• All these pieces together provide the tools for high-throughput 
chemical prioritization
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Chemical Descriptor NAMs

CPCat

CPCPdb

Ingredient
Lists

Functional
Use Data

Measured
Data

General use 
categories

Reported 
chemicals in 
products

Chemical role 
in products Identification o

Compounds
f 

https://comptox.epa.gov/dashboard



13 of 26 Office of Research and Development

Chemical Descriptor NAM

• We are using informatics approaches to obtain and 
curate additional chemical descriptor information 

• Data from chemical use, monitoring, and release 
domains

• Public data sources: reports, open literature, databases

• Focus on expanding to critical pathways (e.g., 
occupational)

s
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High-throughput Measurement NAMs

• Targeted Analysis:
‒ We know exactly what we’re looking for 
‒ 10s – 100s of chemicals

• Non-Targeted Analysis (NTA):
‒ We have no preconceived lists
‒ 1,000s – 10,000s of chemicals

• Ongoing consumer product scanning and blood 
sample monitoring via contract  (NTA and confirmation 
of tentative IDs with available standards

• Development of significant in-house capabilities
• EPA is coordinating a comparison of non-targeted screening workflows used by leading academic and 

government groups using known chemical mixtures (ToxCast) and standardized 
environmental/biological samples

• Goal is to develop tools, databases, and workflows for rapid analysis of any sample for chemicals of 
interest, i.e. exposure forensics  

High Resolution Mass Spectrometry
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NTA Studies in the ExpoCast Project

Consumer Products

• Pilot study of 20 classes of products, 
including clothing, personal care 
products, carpet padding, cleaners

• 5 products from each category
• GC X GC/MS
• Phillips et al., Env. Sci. Tech. 2018

Recycled Materials

• Products from six categories of 
recycled products, including building 
materials, paper products, toys, and 
clothing

• 20 products per category with 50% 
recycled material, 8 products virgin 
materials

• GC X GC/MS
• Lowe et al., in prep

Residential Dust

• Dust samples from 56 U.S. homes 
in the American Health Homes 
Survey

• LC/MS
• Rager et al., Env. Int., 2016
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High Throughput Exposure Model NAMs

Consumer Isaacs et al. (2014)
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Evaluation NAMs: The SEEM Framework

• We use Bayesian methods to incorporate multiple pathway models into consensus 
predictions for 1000s of chemicals within the Systematic Empirical Evaluation of 
Models (SEEM)

Hurricane path 
prediction is an 

example of integrating 
multiple models

Material from John Wambaugh
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Evaluation NAMs: The SEEM Framework

• We use Bayesian methods to incorporate multiple pathway models into consensus 
predictions for 1000s of chemicals within the Systematic Empirical Evaluation of 
Models (SEEM)

• ExpoCast is developing SEEM Models for 
multiple receptors and pathways

• Human (Wambaugh et al., 2013, 2014; 
Ring et al., 2018)

• Evaluated with NHANES 
biomonitoring data

• Ecological (Sayre et al., in prep)
• Evaluated with USGS water data

• Occupational (planned)
• Evaluated with OSHA occupational 

monitoring data

Material from John Wambaugh
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Human SEEM Model (3rd Generation) Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin Isaacs, Olivier Jolliet, 

Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor (including Models) Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents (REDs) 
Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and 
Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 Dietary

Material from John Wambaugh
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Human SEEM3: Pathway-Based Consensus Modeling 
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Material from John Wambaugh

• Machine learning models 
were built for each of four 
exposure pathways

• Pathway predictions can be 
used for large chemical 
libraries

• Use prediction (and accurac
of prediction) as a prior for 
Bayesian analysis

• Each chemical may have 
exposure by multiple 
pathways
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Human SEEM3: Consensus Modeling of 
Median Chemical Intake 

• We extrapolate to predict relevant 
pathway(s), median intake rate, and credible 
interval for each of 479,926 chemicals

• Of the chemicals evaluated, 30% have less 
than a 50% probability for relevance to any 
of the four pathways and are considered 
outside the “domain of applicability”

• This approach identifies 1,880 chemicals for 
which the median population intake rates 
may exceed 0.1 mg/kg bodyweight/day.

Ring et al., 2019

Material from John Wambaugh
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Human SEEM3: Consensus Modeling of 
Median Chemical Intake 

Ring et al., 2019

• We extrapolate to predict relevant 
pathway(s), median intake rate, and credible 
interval for each of 479,926 chemicals

• Of the chemicals evaluated, 30% have less 
than a 50% probability for exposure via any 
of the four pathways and are considered 
outside the “domain of applicability”

• This approach identifies 1,880 chemicals for 
which the median population intake rates 
may exceed 0.1 mg/kg bodyweight/day.

• There is 95% confidence that the median 
intake rate is below 1 µg/kg BW/day for 
474,572 compounds.

Material from John Wambaugh
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Toxicokinetics NAMs

• Chemical-specific data for 
toxicokinetics (TK) are as sparse as 
for exposure

• High throughput TK methods have 
provided data for nearly 1000 
chemicals over the past decade

• However, thousands of chemicals 
remain requiring machine learning 
and QSAR approaches

In vitro Measurements

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~300 chemicals
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Prioritization NAMs: Risk-Based Evaluation in Practice

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening + toxicokinetics NAMs 
can estimate doses needed to 
cause bioactivity
(e.g., Wetmore et al., 2015)

Consensus exposure rates 
with uncertainty
(e.g., Ring et al., 2018)
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Summary

• Estimates of human and ecological exposures are required as critical input to risk-based prioritization 
and screening of chemicals. 

• The ExpoCast project seeks to develop the data, tools, and evaluation approaches required to generate 
rapid and scientifically-defensible:
‒ Exposure predictions for the full universe of existing and proposed commercial chemicals.
‒ The toxicokinetic data required to relate bioactive concentrations identified in high-throughput 

screening to predicted real world doses (i.e. in vitro-in vivo extrapolation). 

• We are developing and applying computational and analytical new approach methodologies for exposure 
science and toxicokinetics that are appropriate for application to 1000s of chemicals.

• Rapid prediction of chemical exposure and bioactive doses allows prioritization based upon risk. 
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